研究成果 学術雑誌

学術雑誌2023年

  • Khatri, P., and T. Hayasaka (2023), Comparison of Cloud Properties between SGLI Aboard GCOM-C Satellite and MODIS Aboard Terra Satellite, Remote Sensing, 15(4), doi:10.3390/rs15041075.
  • Ningombam, S. S., P. Khatri, E. J. L. Larson, U. C. Dumka, C. Sarangi, and R. Vineeth (2023), Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data, Sci Total Environ, 858(Pt 2), 159898, doi:10.1016/j.scitotenv.2022.159898.

学術雑誌2022年

  • Letu, H., Nakajima, T. Y., Wang, T., Shang, H., Ma, R., Yang, K.,  Baran, A. J., Riedi, J., Ishimoto, H.,  Yoshida, M., Shi, C., Khatri, P., Du, Y.  Chen, L. and  Shi, J. (2022): A New Benchmark for Surface Radiation Products over the East Asia–Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite, Bulletin of the American Meteorological Society, 103, doi: 10.1175/bams-d-20-0148.1.
  • Khatri, P., Hayasaka, T., Irie, H., Letu, H., Nakajima, T. Y., Ishimoto, H., and Takamura, T. (2022): Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data, Atmospheric Measurement Techniques, 15, doi: 5194/amt-15-1967-2022.
  • Nur’utami, M. and T. Hayasaka, 2022: Interannual Variability of the Indonesian Rainfall and Air–Sea Interaction over the Indo–Pacific Associated with Interdecadal Pacific Oscillation phases in Dry Season. J. Meteor. Soc. Japan, 100, 77-97, https://doi.org/10.2151/jmsj.2022-004.
  • Wang, X., Iwabuchi, H., Yamashita, T., 2022, Cloud identification and property retrieval from Himawari-8 infrared measurements via a deep neural network, Remote Sensing of Environment, 275, 113026, doi: 10.1016/j.rse.2022.113026.
  • Wang, X., Iwabuchi, H., Courbot, J. B., 2022, Analysis of Diurnal Evolution of Cloud Properties and Convection Tracking over the South China Coastal Area, Remote Sensing, 14, 5039. doi: 10.3390/rs14195039.
  • Yamashita, T., H. Iwabuchi: Diurnal Variations of Different Types of Cloud over the Baiu– Meiyu Frontal Zone Using Retrieved Cloud Properties: Implication for the Rainfall Process. Atmospheric Research, Volume 271, 15 June 2022, 106139, https://doi.org/10.1016/j.atmosres.2022.106139
  • Khatri, P., T. Hayasaka, B. N. Holben, R. P. Singh, H. Letu, and S. N. Tripathi (2022), Increased aerosols can reverse Twomey effect in water clouds through radiative pathway, Sci Rep, 12(1), 20666, doi:10.1038/s41598-022-25241-y.
  • Dumka, U. C., D. G. Kaskaoutis, P. Khatri, S. S. Ningombam, R. Sheoran, S. Jade, T. S. Shrungeshwara, and M. Rupakheti (2022), Water vapour characteristics and radiative effects at high-altitude Himalayan sites, Atmospheric Pollution Research, 13(2), doi:10.1016/j.apr.2021.101303.

学術雑誌2021年

  • Zhang, Jinglin; Pu Liu; Feng Zhang; Hironobu Iwabuchi; Antonio Artur de Moura; Victor Hugo C. de Albuquerque: “Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things”. IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021. DOI:10.1109/JIOT.2020.3043289
  • Wetchayont, P., Hayasaka, T., and Khatri, P. (2021), Air Quality Improvement during COVID-19 Lockdown in Bangkok Metropolitan, Thailand: Effect of the Long-range Transport of Air Pollutants, Aerosol and Air Quality Research, 21, doi: 4209/aaqr.200662.
  • Kajino, M., Deushi, M., Sekiyama, T. T., Oshima, N., Yumimoto, K., Tanaka, T. Y., Ching, J., Hashimoto, A., Yamamoto, T., Ikegami, M., Kamada, K., Miyashita, M., Inomata, Y., Shima, S.-I, Khatri, P.,  Shimizu, A., Irie, H., Adachi, K., Zaizen, Y., Igarashi, Y., Ueda H., Maki, T., and Mikami, M. (2021): Comparison of three aerosol representations of NHM-Chem (v1.0) for the simulations of air quality and climate-relevant variables, Geoscientific Model Development, 14, doi: 5194/gmd-14-2235-2021.
  • Misra, P., Takigawa, M., Khatri, P., Dhaka,  K., Dimri, A. P.,  Yamaji, K., Kajino, M.,  Takeuchi, W.,  Imasu, R.,  Nitta, K.,  Patra, P. K., and Hayashida, S. (2021): Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India, Scientific Reports, 11, doi: 10.1038/s41598-021-87673-2.
  • Khatri, P. and Hayasaka, T. (2021): Impacts of COVID-19 on Air Quality over China: Links with Meteorological Factors and Energy Consumption, Aerosol and Air Quality Research, 21, doi: 4209/aaqr.200668.
  • Khatri, P., Hayasaka, T., Holben, B., Tripathi, S. N., Misra, P., Patra, P. K., Hayashida, S., and Dumka, U. C. (2021): Aerosol Loading and Radiation Budget Perturbations in Densely Populated and Highly Polluted Indo‐Gangetic Plain by COVID‐19: Influences on Cloud Properties and Air Temperature, Geophysical Research Letters, 48, doi: 10.1029/2021GL093796.
  • Takamura, T. and Khatri, P. (2021): Uncertainties in Radiation Measurement Using a Rotating Shadow-Band Spectroradiometer, Journal of the Meteorological Society of Japan, 99, doi: 10.2151/jmsj.2021-075
  • Takahashi,N., T. Hayasaka, B. Qiu, and R. Yamaguchi, 2021: Observed Response of Marine Boundary Layer Cloud to the Variations of Summertime Oyashio Extension SST Front on Inter-annual Timescales. Climate Dynamics, https://doi.org/10.1007/s00382-021-05649-4.

学術雑誌 2020年

  • Zhang, B., Z. Guo, L. Zhang, T. Zhou, and Hayasaya (2020), Cloud characteristics and radiation forcing in the global land monsoon region from multisource satellite data sets, Earth and Space Science, 7, e2019EA001027, doi:10.1029/2019EA001027.
  • Takahashi, N. and T. Hayasaka (2020), Air-sea interactions among oceanic low-level cloud, sea surface temperature, and atmospheric circulation on intra-seasonal timescale in summertime North Pacific based on satellite data analysis, Journal of Climate, 33, doi: 10.1175/JCLI-D-19-0670.1
  • Takahashi, N., T. Hayasaka, A. Manda, and N. Schneider, 2020, Impact of Oyashio Extension SST front on Synoptic Variability of Oceanic Low-level Cloud in Summertime based on WRF Numerical Simulation, Journal of Geophysical Research-Atmospheres, 125, doi: 10.1029/2020JD032518
  • W., F. Zhang, Y-N. Shi, H. Iwabuchi, M. Zhu, J. Li, W. Han, H. Letu, and H. Ishimoto (2020), Efficient radiative transfer model for thermal infrared brigthness temperature simulation in cloudy atmosphere, Optics Express, 28, doi: 10.1364/OE.400130.
  • Yao, B., C. Liu, Y. Yin, Z. Liu, C. Shi, Iwabuchi, and F. Weng, (2020), Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach, Atmospheric Measurement Techniques, 13, doi: 10.5194/amt-13-1033-2020.
  • Li, W., F. Zhang, Y. Yu, Iwabuchi, Z. Shen, G. Wang, and Y. Zhang (2020),The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm, Climate Dynamics, doi:10.1007/s00382-020-05474-1
  • Kajino, M., M. Deushi, T. T. Sekiyama, N. Oshima, K. Yumimoto, T. Y. Tanaka, J. Ching, A. Hashimoto, T. Yamamoto, M. Ikegami, A. Kamada, M. Miyashita, Y. Inomata, S. Shima, Khatri, A. Shimizu, H. Irie, K. Adachi, Y. Zaizen, Y. Igarashi, H. Ueda, T. Maki, and M. Mikami (2020): Comparison of three aerosol representations of NHM-Chem (v1.0) for the simulations of air quality and climate-relevant variables, Geoscientific Model Development Discussion, doi:10.5194/gmd-2020-229.
  • Khatri, P., H. Ooashi, and H. Iwabuchi (2020): Investigating aerosol effects on maritime deep convective clouds using satellite and reanalysis data, Scientific Online Letter on the Atmosphere,16, doi:10.2151/sola.2020-038.
  • Nakajima, T., M. Campanelli, H. Che, V. Estellés, H. Irie, S.-W. Kim, J. Kim, , D. Liu, T. Nishizawa, G. Pandithurai, V. K. Soni, B. Thana, N.-U. Tugjsurn, K. Aoki, S. Go, M. Hashimoto, A. Higurashi, S. Kazadzis, Khatri, N. Kouremeti, R. Kudo, F. Marenco, M. Momoi, S. S. Ningombam, C. L. Ryder, A. Uchiyama, , and A. Yamazaki (2020), An overview of and issues with sky radiometer technology and SKYNET, Atmospheric Measurement Techniques, 13, doi:10.5194/amt-13-4195-2020.
  • Letu, H., K. Yang, T. Y. Nakajima, H. Ishimoto, T. M. Nagao, J. Riedi, A. J. Baran, R. Ma, T. Wang, H. Shang, P. Khatri, L. Chen, C. Shi, and J. Shi (2020), High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite, Rem. Sens., Environ., 239, doi:10.1016/j.rse.2019.111583
  • Yang, Q., Zhang, F., Zhang, H., Wang, Z., Iwabuchi, H., & Li, J. (2020). Impact of δ-Four-Stream Radiative Transfer Scheme on global climate model simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 243, [106800]. https://doi.org/10.1016/j.jqsrt.2019.106800
  • Khatri, P., H. Ooashi, and H. Iwabuchi (2020): Investigating aerosol effects on maritime deep convective clouds using satellite and reanalysis data, Scientific Online Letter on the Atmosphere,16, 228-232, doi:10.2151/sola.2020-038.
  • Li, W., F. Zhang, Y. Yu, Iwabuchi, Z. Shen, G. Wang, and Y. Zhang (2020),The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm, Climate Dynamics, doi:10.1007/s00382-020-05474-1
  • Wenwen Li, Feng Zhang, Yi-Ning Shi, Hironobu Iwabuchi, Mingwei Zhu, Jiangnan Li, Wei Han, Husi Letu, and Hiroshi Ishimoto: Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres. Optics Express, Vol. 28, No. 18, 25730-25749, 31 Aug. 2020. https://doi.org/10.1364/OE.400130
  • Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng: Assessment of cloud properties from the reanalysis with satellite observations over East Asia. Atmos. Meas. Tech. 13, 1033–1049, 2020. https://doi.org/10.5194/amt-13-1033-2020
  • Xue, D., F. Zhang, H. Iwabuchi, J. Li, and Wei Han, The d-six-stream spherical harmonic expansion adding method for solar radiative transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 243, 106818, 2020. https://doi.org/10.1016/j.jqsrt.2019.106818

学術雑誌 2019年

  • Damiani, A., H. Irie, T. Takamura, R. Kudo, P. Khatri, H. Iwabuchi, R. Masuda, and T. Nagao, An intensive campaign-based intercomparison of cloud optical depth from ground and satellite instruments under overcast conditions, Sci. Online Lett. Atmos, 2019, Vol. 15, 198-204, doi:10.2151/sola.2019-036.
  • Khatri, P., Iwabuchi, H., Hayasaka, T., Irie, H., Takamura, T., Yamazaki, A., Damiani, A., Letu, H., and Kai, Q.: Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers, Atmos. Meas. Tech., 2019, 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019.
  • Masuda, R., H. Iwabuchi, K. S. Schmidt, A. Damiani, and R. Kudo, Retrieval of Cloud Optical Thickness from Sky-View Camera Images using a Deep Convolutional Neural Network based on Three-Dimensional Radiative Transfer. Remote Sens., 2019, 11, 1962; doi:10.3390/rs11171962
  • Wang, X., & Iwabuchi, H. Wintertime modulation of the local cloud and diagnostic fields by the hadley cell subsiding boundary over the Western North Pacific. Geophysical Research Letters, 2019, 46, 90049012. https://doi.org/10.1029/2019GL083470
  • Wang, X., H. Iwabuchi, N. Takahashi, Characteristics of Diurnal Pulses Observed in Typhoon Attain Using Retrieved Cloud Property Data. SOLA, 2019, Vol. 15, 137−142, doi:10.2151/sola.2019-025
  • Sakai, S., H. Iwabuchi, F. Zhang, Development of a Rapid Retrieval Method for Cloud Optical Thickness and Cloud-Top Height Using Himawari-8 Infrared Measurements. SOLA, 2019, Vol. 15, 57−61, doi:10.2151/sola.2019-012
  • Wang, C., S. Platnick, T. Fauchez, K. Meyer, Z. Zhang, H. Iwabuchi, B. H. Kahn, An assessment of the impacts of cloud vertical heterogeneity on global ice cloud data records from passive satellite retrievals. Journal of Geophysical Research – Atmospheres, 124, 2019. https://doi.org/10.1029/2018JD029681

学術雑誌 2018年

  • Iwabuchi, H., N. S. Putri, M. Saito, Y. Tokoro, M. Sekiguchi, P. Yang, B. A. Baum, Cloud property retrieval from multiband infrared measurements by Himawari-8, J. Meteor. Soc. Japan, 96B, 27-42, 2018. https://doi.org/10.2151/jmsj.2018-001
  • Zhang, F., J.-R. Yan, J. Li, K. Wu, H. Iwabuchi, Y.-N. Shi, A new radiative transfer method for solar radiation in a vertically internally inhomogeneous medium. J. Atmos. Sci., 75, 41-55, 2018. https://doi.org/10.1175/JAS-D-17-0104.1
  • Khatri, P., T. Hayasaka, H. Iwabuchi, T. Takamura, H. Irie, T. Y. Nakajima, Validation of MODIS and AHI observed water cloud properties using surface radiation data, J. Meteor. Soc. Japan, 96B, 151-172, 2018 https://doi.org/10.2151/jmsj.2018-036
  • Khatri, P., H. Iwabuchi, and M. Saito, Vertical Profiles of Ice Cloud Microphysical Properties and Their Impacts on Cloud Retrieval Using Thermal Infrared Measurements, J. Geophys. Res. Atmos, 123, 5301–5319, 2018. https://doi.org/10.1029/2017JD028165
  • Putri, N. S., H. Iwabuchi, T. Hayasaka, Evolution of Mesoscale Convective System Properties as Derived from Himawari-8 High Resolution Data Analyses, J. Meteor. Soc. Japan, 96B, 239-250, 2018. https://doi.org/10.2151/jmsj.2018-020
  • Mok, J., N. A. Krotkov, O. Torres, H. Jethva, Z. Li, J. Kim, J. –H. Koo, S. Go, H. Irie, G. Labow, T. F. Eck, B. N. Holben, J. Herman, R. P. Loughman, E. Spinei, S. S. Lee, P. Khatri, and M. Campanelli, Comparison of spectral aerosol absorption in Seoul, South Korea, Atmos. Meas. Tech., 11, 2295-2311, 2018.  https://doi.org/10.5194/amt-11-2295-2018.
  • Sekiguchi, M. H. Iwabuchi, T. M. Nagao, T. Nakajima, Development of gas absorption tables and an atmospheric radiative transfer package for applications using Advanced Himawari Imager, J. Meteor. Soc. Japan, 96B, 77-89, 2018. https://doi.org/10.2151/jmsj.2018-007
  • Damiani, A. H. Irie, T. Horio, T. Takamura, P. Khatri, H. Takenaka, T. Nagao, T. Y. Nakajima, and R. R. Cordero, Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements, Atmos. Meas. Tech., 11, 2501-2521, 2018. https://doi.org/10.5194/amt-11-2501-2018.
  • Irie, H., Hoque, H. M. S., Damiani, A., Okamoto, H., Fatmi, A. M., Khatri, P., Takamura, T., and Jarupongsakul, T.: Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January–April 2016, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-276, in review, 2018.
  • Shi, Yi-Ning, Feng Zhang, Jia-Ren Yan, Hironobu Iwabuchi, Zhen Wang, The standard perturbation method for infrared radiative transfer in a vertically internally inhomogeneous scattering medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 213, 149-158, 2018. https://doi.org/10.1016/j.jqsrt.2018.03.025

学術雑誌 2017年

  • Okamura, R., Iwabuchi, H., and Schmidt, K. S.: Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning, Atmos. Meas. Tech., 10, 4747-4759, https://doi.org/10.5194/amt-10-4747-2017, 2017.
  • Iwabuchi, H., and R. Okamura: Multispectral Monte Carlo radiative transfer simulation by using the maximum cross-section method. Journal of Quantitative Spectroscopy and Radiative Transfer, 193, 40–46, March 10, 2017. http://dx.doi.org/10.1016/j.jqsrt.2017.01.025
  • Iwabuchi, H., Y. Tokoro, M. Saito, N. S. Putri, M. Sekiguchi, Cloud life cycle studied by using frequent observations by the Himawari-8, Earozoru Kenkyu, 32 (2), 108-111 doi:10.11203/jar.32.108 (Jul. 3, 2017) (in Japanese).
  • Zhang, F., Y. Lei, Q.-R. Yu, K. Fraedrich, and H. Iwabuchi, 2017: Causality of the drought in the southwestern United States based on observations. J. Climate, DOI: http://dx.doi.org/10.1175/JCLI-D-16-0601.1
  • Zhang, F., Y. Shi, J. Li, K. Wu, and H. Iwabuchi, 2017: Variational Iteration Method for Infrared Radiative Transfer in a Scattering Medium. J. Atmos. Sci., 74, 419–430, doi: 10.1175/JAS-D-16-0172.1.
  • Wu, K., F. Zhang, H. Iwabuchi, Y-N. Shi, M. Duan, Double-delta-function adjustment in thermal radiative transfer, Infrared Physics & Technology, 86, 139-146, 2017, doi: http://dx.doi.org/10.1016/j.infrared. 2017.07.006
  • Saito, M., H. Iwabuchi, P. Yang, G. Tang, M. D. King, and M. Sekiguchi, Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP–IIR measurements, J. Geophys. Res. Atmos., 122, 4440–4462, 2017, doi:10.1002/2016JD026080.
  • Takahashi, N., T. Hayasaka, and H. Okamoto, 2017: Ice cloud microphysical properties in tropical Pacific regions derived from CloudSat and CALIPSO measurments. AIP Conferences Proceedings IRS 2016, 1810, 070008 (2017); doi: 10.1063/1.4975529
  • Irie, H., T. Horio, A. Damiani, T. Y. Nakajima, H. Takenaka, M. Kikuchi, P. Khatri, and K. Yumimoto, Importance of Himawari-8 Aerosol Products for Energy Management System. Earozoru Kenkyu, 32(2), 95-100, 2017. doi: 10.11203/jar.32.95.

学術雑誌 2016年

  • Fukushima, S., D. Zhang, T. Shibata, S. Katagiri, and T. Hayasaka, 2016: Dependence of backscattering coefficients of atmospheric particles on their concentration and constitution under dry and humid conditions at southwestern Japanese coast in spring. Aerosol and Air Quality Research, 16, 1294-1301, DOI:10.4209/aaqr.2015.10.0584.
  • Yamada, K. and T. Hayasaka, 2016: Evaluation of the Accuracy of Downward Radiative Flux Observations at the Sea Surface.  J. Oceanography, 72, 553-565, DOI:10.1007/s10872-015-0345-x.
  • Takahashi, N., T. Hayasaka, and H. Okamoto, 2016: Differences in Ice Cloud Microphysical Properties between Western and Eastern Tropical Pacific Regions Derived from CloudSat and CALIPSO Measurements. SOLA, 12, 91-95, doi:10.2151/sola.2016-021.
  • Hayasaka, T., 2016: The Long-term Variation in Surface Shortwave Irradiance in China and Japan: A Review. J. Meteor. Soc. Japan, 94, 393-414, DOI:10.2151/jmsj.2016-024.
  • Iwabuchi, H., M. Saito, Y. Tokoro, N. S. Putri, M. Sekiguchi.: Retrieval of radiative and microphysical properties of cloud from multispectral infrared measurements. Progress in Earth and Planetary Science. 3:32, Oct. 21, 2016. DOI 10.1186/s40645-016-0108-3
  • Song, S. and Schmidt, K. S. and Pilewskie, P. and King, M. D. and Heidinger, A. K. and Walther, A. and Iwabuchi, H. and Wind, G. and Coddington, O. M.: The spectral signature of cloud spatial structure in shortwave irradiance, Atmos. Chem. Phys., Vol. 16, No. 21, 13791–13806, 2016, doi: 10.5194/acp-16-13791-2016
  • Saito, M., H. Iwabuchi: Cloud discrimination from sky images using a clear sky index. J. Atmos. Oceanic Technol., 33, 1583–1595, 2016. doi: 10.1175/JTECH-D-15-0204.1.
  • Okamura, R., and H. Iwabuchi: Physical interpretation of gray cloud observed from airplanes. Applied Optics, Vol. 55, No. 21, 5761-5765, July 19 2016. doi: 10.1364/AO.55.005761
  • Khatri, T. Takamura, T. Nakajima, V. Estellés, H. Irie, H. Kuze, M. Campanelli, A. Sinyuk, S‐M Lee, B.J. Sohn, G. Pandithurai, S‐W Kim, S.C. Yoon, J.A. Martinez‐Lozano, M. Hashimoto, P.C.S. Devara, and N. Manago (2016), Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET, Journal of Geophysical Research: Atmospheres, DOI: 10.1002/2015JD023976.
  • Yumimoto, T. M Nagao, M. Kikuchi, T. T. Sekiyama, H. Murakami, T. Y. Tanaka, A. Ogi, H. Irie, P. Khatri, H. Okumura, K. Arai, I. Morino, O. Uchino, and T. Maki (2016), Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite, Geophysical Research Letters, DOI10.1002/2016GL069298.